

FRIB Introduction and FRIB Controls

Sheng Peng
Controls & Computing Department Manager

FRIB – a DOE-SC National User Facility Enabling Scientists to Make Discoveries

Properties of nucleonic matter

- Classical domain of nuclear science
- Many-body quantum problem: intellectual overlap to mesoscopic science – how to understand the world from simple building blocks

Nuclear processes in the universe

- Energy generation in stars, (explosive) nucleo-synthesis
- Properties of neutron stars, EOS of asymmetric nuclear matter

Tests of fundamental symmetries

 Effects of symmetry violations are amplified in certain nuclei

Societal applications and benefits

• Bio-medicine, energy, material sciences, national security

FRIB Users Organization 1333 Users Ready for Science

- Users are organized as part of the independent FRIB Users Organization
 - FRIBUO has 1350 members (92 U.S. colleges and universities, 10 national laboratories, 53 countries) as of April 2013
 - Chartered organization with an elected executive committee (Chair is Michael Smith, Oak Ridge National Laboratory (ORNL))
 - FRIBUO has 20 working groups on experimental equipment
 - Significant User participation and support for FRIB in the NSAC Long Range Plan Implementation subcommittee
- Science Advisory Committee
 - Review of equipment initiatives (February 2011)
 - Review of FRIB integrated design (March 2012)
 - Review of first steps to science (planned for Dec 2013)

August 2012
Joint Users Meeting
306 participants

fribusers.org

FRIB Project at MSU Project of \$700M (\$94.5M MSU, the rest from DOE)

- Dec. 2008: DOE selects MSU to establish FRIB
- June 2009: DOE and MSU sign corresponding cooperative agreement
- Sept. 2010: CD-1 granted; conceptual design complete & preferred alternatives decided
- April 2012: Lehman Review, finds FRIB is ready for construction
- June 2013: Lehman Review, plan to get CD-2/3A approval 3rd Quarter 2013

Michigan State University 57,000 people; 36 sq mi; \$1.8B annual revenue; 552 buildings

Site Layout: FRIB addition connects to existing NSCL building

Building Configuration

Final Design of Conventional Facilities Complete

View from Southeast

Ready for Civil Construction to Begin

- Site preparation and placement of pilings for earth retention complete
- Ready for start of civil construction upon approval from DOE-SC

Photo from 25 February 2013; live and time lapse images at frib.msu.edu

Facility Layout

Accelerator Design & Requirements

- Delivers FRIB accelerator as part of a DOE-SC national user facility with high reliability & availability
- Accelerate ion species up to ²³⁸U with energies of no less than 200 MeV/u
- Provide beam power up to 400 kW
- Satisfy beam-on-target requirements
- Energy upgrade by filling vacant slots with 12 SRF cryomodules
- Maintain ISOL option
- Upgradable to multiuser simultaneous operation of light/heavy ions with addition of a light-ion injector

Experimental Systems Scope

- Facility performance expectations
 - Rare isotope production with primary beams up to 400 kW, 200 MeV/u uranium
 - Fast, stopped and reaccelerated beam capability

• Experimental areas and scientific instrumentation for fast, stopped, and

reaccelerated beams

World-class science on day one

- Experimental Systems project scope
 - Production target facility
 - Fragment separator
- Non-TPC contributions to Experimental Systems
 - Beam stopping systems, reaccelerator, experimental areas, experimental equipment

Facility Layout

FRIB Driver Accelerator Layout

FRIB Resonators and Cryomodules: Beam Dynamics Specifications

Conventional Facility

Racks, cable tray, conduit arrangement How does tunnel look like

Controls Technical Scope

- An integrated control system
 - Technically Integrated
 - No fence between accelerator and experiments
- A large distributed control system based on EPICS framework
- Global systems
 - Global timing system
 - Machine protection system
 - Network and computers
- High level applications
 - High level applications
 - » Control Room Application
 - » Operation Application
 - Physics applications
 - Database

- Low level controls
 - Vacuum/Power Supply/RF
 - Cryomodule & Cryoplant
 - Front End/Ion Source/RFQ
 - Stripper
- Personnel protection system
- Diagnostics support
- Conventional facility integration

Collaboration

- EPICS is an extremely successful story of collaboration
- Are we ready for another success
 - Database collaboration
 - EPICS V4 collaboration
 - Control System Studio
 - OpenXAL
 - MTCA.4
- Overall it is a full solution control system

Database Scope

#	DB	Description	#	Database	Description
1	Logbook	Logbook entries	8	Alarm	Set changes, set/read mismatches
2	Traveler	Production, test, design data	9	Operations	Beam statistics, run hours, beam on target, shift summary, downtime, bypass
3	Configurat	Physical and logical information			records
	ion	about the facility and its configuration	10	FRIB Reqs	Parameter list, system and component requirements
4	Infrastruct ure	Cables, IOCs, Racks, Rooms etc	11	MPS	Machine state dumps
5	Lattice/ Model	Elements and online model	12	Results	Results from physics experiments
6	Inventory	Spare parts, stock items	13	Maintenan ce	Preventive maintenance data, failure analysis, lifetime analysis
7	State	Save/restore state of FRIB			
		segments	14	Interlocks	Interlock hierarchy information [optional]
	FRIB	Facility for Rare Isotope Beams U.S. Department of Energy Office of Science			

Michigan State University

Application Architecture

Application layer

- Operator interfaces
- High-level applications
- Libraries

Service layer

- Access to data
- Programming Interface

Data layer

- Managed data
- Instrument data
- No direct access

CDB Collaboration

- Partners
 - Brookhaven National Lab, New York, USA
 - European Spallation Source, Sweden
 - Facility for Rare Isotope Beam, Michigan, USA
 - Institute for High Energy Physics, Beijing, China
- Co-chairs:
 - Vasu Vuppala, FRIB
 - Bob Dalesio, BNL
- Goal: EPICS for Data Services
 - Easy to Install
 - Easy to Configure
 - Extensible
 - Well-Defined Interfaces
 - Documentation, Training
- Started in November 2011

Collaboration Status

#	Module	Developed At	Status
1	Logbook	FRIB, BNL, SNS	Production: FRIB, BNL. Evaluation: ITER
2	Traveler	FRIB	Production: FRIB
3	Configuration	FRIB (BNL)	Production: FRIB
4	Save/Restore	BNL	Production: BNL Evaluation: FRIB
5	Lattice/Model	FRIB, IHEP	Test: FRIB, IHEP
6	Cables	BNL, FRIB	Test: BNL
7	Signals (PVmanager, ChannelFinder, DirectoryService)	BNL, HZB	Production: FRIB, BNL, HZB
8	Authentication	FRIB	Prototype: FRIB

Operation Applications

- Logbook (olog) in Production
- eTraveler in Production
- Proteus: Configuration Manager in Production
- Proteus: Naming System in Production
- Actively working on cable management
- Actively working inventory and calibration

E-Logbook

Integrated Configuration Manager with alive PV reading

Naming management

Control Room Applications (mostly CSS)

#	Client	Description	Owner	Status
1	Alarm Handler (BEAST)	Control System Studio (CSS) feature that allows user to acknowledge, and configure alarms	SNS	Installed Next: JMS PvManager Datasource
2	Save Set Restore (MASAR)	CSS feature to allow user to configure sets, save, and restore PVs	FRIB/BNL	Design
3	Operator Interface Builder (BOY)	CSS BOY is a WYSIWYG display builder and Operator Interface (OPI) runtime environment	SNS	Installed Next: User training
4	Knobs	CSS interface to hardware knobs	FRIB	Design
5	Scan Client	CSS feature that allows a user to define and run scans, view it's progress, and save results to file	FRIB	Installed (sscan based) Next: SNS Scan Client
6	Logbook	A web and CSS application to create operational log entries,	FRIB	Web: Installed Next: Drop CakePHP CSS: Installed Next: BNL Logviewer
7	Databrowser	CSS application to view both realtime and archived data from the control system	SNS	Installed
8	Directory Service Integration	Allows CSS and BOY to create screens from queries instead of static PV names	BNL	Installed

OpenXAL

- A collaboration of
 - FRIB
 - SNS
 - ESS
 - Triumf
 - CSNS
 - GANIL

Still at early stage, looking for ramp-up in

MySQL database interface added

FRIB devices added

Physics algorithm verification and design benchmark are going on

EPICS V4

- Bob has a lot to say
- FRIB is supporting/utilizing EPICS V4 interface

Low Level Control

- Allen Bradley PLC
 - Vacuum
 - Cryo
- Ethernet-serial terminal server

- UDP over Ethernet
 - LLRF
 - PS
- EPICS V3 IOC
 - Hot-swappable IOC
 - IPMI manageable
 - Virtualized IOC

- Redhat MRG-R
- RT patch

MTCA.4

MTCA.4: FRIB General Purpose Digital Board

FGPDB Detail

Spartan-6 FPGA

Up to 147K logic cell Up to 540 IOs and 8 MGTs Low-cost

Low-speed GPIO1 Connector

15 pairs differential or 30 single-ended programmable signals

Switches and LEDs

20 positions switches 12 user defined LEDs on the panel

µRTM Connector

66 pairs differential or 132 single-ended programmable signals

Two pairs differential output clocks

Two channels MGTs

SFP Connector

Two 3.125Gbps fiber channels SFPs with a 4x4 cross-point switch

LEMO Connector

One LVTTL external clock signal input One LVTTL external trigger signal input

FMC Connector

Reserved to extend I/Os with FMC-LPC daughter card

USB-A Connector

Provide UART-to-RS232 debug interface

RJ45 Connector

10/100/1000 Ethernet

AMC Connector

PCI Express 1x channel Giga-Ethernet channel

Eight ports user defined M-LVDS transceivers

Two ports user defined point-to-point clocks

FRIB

Power Connector Single 12V

Single 12V power supply

High-speed GPIO3 Connector

17 pairs differential or 34 single-ended programmable signals

DDR3

Two independent 2Gbits DDR3

chips Peng. May 2013 EPICS Meeting @ Diamond, Slide 35

Needed

- Need low cost, new generation of fanout/concentrator
 - MTCA form factor
 - 1:12 ideally
- Always keep Pizzabox option

- Develop more MTCA board with inter-changeable IO modules (RTM):
 - Working with BNL
 - » Potential high-end general purpose digital board
 - BPM front end (RTM)
 - LLRF front end (RTM)
 - MPS front end (RTM)
 - You are welcome to join!

Q&A

Wants to know more about FRIB

pengs@frib.msu.edu

Welcome to Michigan!

